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THEORY OF HEAT TRANSFER AND HYDRAULIC RESISTANCE
OF OIL RADIATORS ST

By N. B. Mariamov

In the present report the coefficients of heat trans-
fer and hydraulic resistance are theoretically obtained
for the case of laminar flow of a heated viscous liguid
in a narrow rectangular channel. The results obtained
are applied to the computation of o0il radiators, which
to a first approximation may be considered as made up of
a system of such channels., In conclusion, a comparison
is given of the theoretical with the experimental results
obtained from tests on airplane o0il radiators.

NOTATION EMPLOYED

mean velocity of flow of ligquid:

4]

v velocity of flow at'any point

t temperature of the Walll

t mean temperaﬁure of the liguid at any cross section -

tl temperature of the liquid at any point

'ti temperature of the-liguid et inleﬂ to chaneel'or radiator

6 = t - t, mean temperature differenée'at any-cross section

8 =t - t, temperature d1?ference at any p01nt

90 =% - %, temperature difference at 1n1et to channel or
S ’ radiator, T . et .o

a8 . heat conduction'coefficientA S

* Report Np. 444, of the Central Aero-Hydrodynamical Insti-
tute, Moscow, 1939. . ‘ . . -
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A coefficient of he-a‘t.-co-.nduc-t‘ivrit-y-‘ of liquia
coefficient of viscosity of liquid

h height (width) of channel (passage) through which
liquid flows: R

dy hydraulic diameter of passage -

L length of channel through which liquld flows

Nu . Nusselt number

Pep Péclet number referréd to hydraulic-dia@eter
Re, Reynolds numbér.reférhéd to}hydraulic diameter

fr coefficient of hydraulie resistance

INTRODUCTION

The problem of 0il cooling of airplane engines is a
very important one at the present time. Only a compara-
tively short time ago this was not the case. because of the

‘relatively small quantities of heat required to be disgi-

pated by the radiator which consequently could be of small
dimensions. Engine cooling by liquids with high boiliang
points considerably increases the heat transfer in the o0il
(1.5 to 2 times) a fact which leads to an increase in the
required radiator dimensions. At the same time the aero-
dynamic fineness of airglanes has reached a stage where
the air-oil radiator, which projects above the surface of
the airplane, considerably impairs its aerodynamic effi-
ciency. A study of the operation of 0il radiators, with
the object of odbtaining computation formulas required for
a rational design of the radiator under given conditions
(speed of airplane, temperature of air and oil, power of
engine, etc.), thus assumes considerable importance,.

The main object of the present paper is that of deter-
mining the coefficients of heat transfer of o0il radiators
and their hydraulic resistance to the flow of the oil.
Since the coefficient of heat transfer from the wall to
the air is sufficiently well known (references 1, 2) the
problem of determining the heat transfer coefficients of
0il radiators reduces to that of determining the heat
transfer coefficients from the oil to the wall.
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The largec viscosity of-aviation: oils on the oné hand,
.and the. small width of .the. oil—-flow. passages .and. small
velocity of flow on thc other.hand;.pcrmit us. to considor
the flow of the o0il within tho radiator as laminar.
Under this assumption, we have attempted to determine the-—
oretically the heat transfer coefficient from the oil %o
the wall. : ' . :

The problem of heat transfer of a straight round tube,
through which flows a -heated viscous liquid, was first
.solved Dby Graetz and later by a number of other investi-—
gators. (See references.) Notwithstanding the rather
rough assumptions which were generally made in the solu—
tion.of this problem, the results for small valuecs .of the
Reynolds number, as Kraussold has shown (fig. 1), arc in
sufficiently good agrecment with experiment. The applica—
tion, however, of thesc results to the computation of the
heat—transfer coefficicnts of o0il radiators may lead to
large errors, for it is not known in vhat manncr the data
obtained for the round tubec may be gencralizcd to the
narrow rectangular channels, such as provided by the pas—
sages for the ligquid in airnlane radiators with hexagonal
tubes. For this reason, following the method of Husselt,
we have presented the solution of the problem for a nar—
row rectangular channel so that the solvtion may be ap—
plicable to a radiator (fig. 2) which, to a first approx—
imation, may be considered as a system of such channels.

To simplify the solution we have made a number of
assumnptions not entirely corresponding to the actual pro—
cess of heat transfer in the radiator. As will be shown
below, however, we obtain in the given case, as also in
the case of the round tube, a satisfactory agreement of
the analytical solution with test results.

The obtained solution evidently may'be applticd to
radiators with any viscous fluid as coolants, provided the
flow is laminar.

2. HEAT TRANSFER FOR LAMINAR FLOW OF VISCOUS FLUID
IN NARROW RECTANGULAR CHANNEL
Let us consider the flow of a heéﬁed viscous fluid in

a straight channel having for its cross section a rectan-—
gle whose base is large relative to its height (fig. 3).
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We shall choose the position of the coordinate axes as
jndicated on the figure. The motion of the liquid may
be considered as two-dimensional since the side walls,
in view of their distance from the x-axis, have only a
slight effect on the velocity field.

The problem is that of determining the manner 1in
which the coefficient of the heat transfer from the liquid
to the walls of the channel varies with the velocity of
flow and with the zeometric parameters of the channel
(h,L). Por the solution of our problem, we make the fol-
lowing assumptions:

1) The temperature of the channel walls is constant.
2) The channel wall surfaces are absolutely smooth.

3) The physical constants of the liguid at any cross
section are constant. .

4) The temperature of the liquid at the inlet section
of the channel is the same at all points.

5) The laminar flow of the liguid is fully developed:
over the entire part of the channel under
consideration.

Since laminar flow of the ligquid is assumed, the phe-
nomenon of heat transfer from the ligquid to the wall will
be determined chiefly by the conduction of the heat in a
direction normal to the motion of the fluid. With the co-
ordinate aXes chosen as in figure 3, we write down the
fundamental differential equation of the steady temperature
field

3%¢ 3%t , 2%¢\ _ at 3t ot
+ T b = TV b = Vo =V
where a heat conduction coefficient

t temperature of the fluid at any point

X,¥,%2 coordinates of any point
vx,vy, vz components of the fluid velocity at any point
Denoting the constant temperature of the channel walls
by t, and the temperature difference at a given point
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by 8 =t - t, we obtain from (1) the differential equa~-.
tion of steady heat exchange e e e e -
N ] Ry~ ] a
a(ae+ae+a§> MV v 408 v+ Wy, (2)
3x®  3y®  35° o ox dy de

SIDCG the laminar flow of the fluid is in the direction
of the x-axis, we have, obviously

Ve = ¥y = 0

Further, assuming gg.; const, that is, that the tempera-
x

ture gradient of the temperature difference of the fluid
varies only slightly in the direction of the x-axis, we

may neglect the term Q__ by comparison with the term — .

2 ox” oy
Finally, we have 'Q.%.: 0. The differential equation of
oz

heat exchange under our conditions thus becomes
a 8 _ 38
a =3 = —; Vx (3)

Prom elementary hydraulic considerations, it can easily

be shown that for laminar flow in a channel the cross
section of which is a rectangle with base large relative

to its neight, the velocity distribution follows the par-
abolic law as in the case of the round tube and is expressed
by the formula

3 < 2\
where ¥ 1s the mean velocity of the fluid
and h the height of the channel.

Substituting in (3) the value obtained for vy and
'setting h/2 = b we shall have

2 o . 2
a @._.g. = ;.5-. V(l - Y.é. .a...e.. (5)
oy 2 b ox



6 NACA Technical Memorandum No. 1020

The obtained differential equation determines the temper-
ature difference as a function of the coordinates; the
other magnitudes - physical constants of the fluid, rel-
ative length of channel (L/h). and mean velocity of flow =
appearing as parameters. ’

Pollowing the method of Fourier, we represent the
general integral of equation (5) in the form of a product
of two functions:

0 =o (x) Vv (¥) (6)

one of which is a2 function of x alone and the other of
y alone., Substituting in equation (5), we obtain:

2 s 2N .
o ¥ o= é;(l - aL:)@.cew
dy”~ 2 v/ dx
2. —_—
av 3 7 4@
2 2 .
or dy = ———-—g'-zt-— (7)
2 a®
<1 - ”-’g\xv
v°/

In the above expression, the left side is a function
of y alone and the rignt side of =x alone. Since the
equality is true for all values of x and y it follows
that the right and left sides of the equation must be
equal to the same constant magnitude. Denoting the latter

2

by - g: the differential equation (5) breaks up into a
be : s
pair of ordinary differential equatioans
av , 2 ac®
-4+ = =0 =0 (8)
dx 3 b
2 2 2
Ly °2<1 y-§'>\l/=0 (2)
dy b b

c
L (11)
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where D and ¢ are constants determined by the
- following boundary - conditions- -

8 (0, y) = 8, condition at inlet section of channel
6 (x, B) =0 condition at surface of channel

By a change in the vartiable y/b = ¢t equation (9) is
transformed 1nt9

%%%-+ e® (1~ ga§w =0 (12)

The solut1on of the above equation is a certain function
W (c®;t). By applying the method of successive approxima-
tions to equation (12), we can find this function. Assum-
ing it as known, we obtain the general integral of equation
(5) in the form

_c2z2
¥ 3

8 = De

X

\y(carg) (13)

The constants of the integration ¢c® and D are deter-
mined from a consideration of the boundary conditions.

The constant ¢2 1is easily found from the second condition
which, evidently, can be satisfied only if

We?; 1) =0 (14)

o |0
<440

In this way we arrived at the eguation by which the con-
stant ¢ is determined.

The function V(c¢? i £), appearing as the solution of
equation (12), cannot be represented in finite form and
is expressed in the form of an infinite series. Equation
(14) thus has an infinite multipliecity of roots. By ap-
Plying the method of successive approximations, we com-
puted the first three roots

}
i

vie? 1), =¢,® = 2,827
¥ (e :. 1), = ¢p® = 32.0
v(e , 1), =¢,2 = 92.1
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Corresponding to these, expression (13) for the temperature
difference may be represented in the form of an infinite sum
of particular solutions o :

i=100 __‘2_02—_51__3
0= X De > ().
-
Remembering that

B, ._Y

=-—2—-, E—— b

and introducing the Péclet number
Pe:‘}}*lz

we obtain

The constants Dy are determined from a consideration of

the conditions at the inlet section of the channel. For the
first three constants the following values were obtained

D, = 1,208 b,
D, = 0,299 6,,
D, =0,118 6,.

Substituting the values thus found for €42 and Dy we
finally obtain

1 x

__7,54_1._'5. _85,4__8__
0:60[1,208e "ty (—?})—0,299 e Tty (%>+

N -—246%3—;—’ y
L0118 ¢ ¥  F +...]. (15)

On figure 4 are plotted the graphs of the functions UER
and V5. To determine the coefficients of heat transfer of
the channel, it 1is necessary to find the value of the mean
temperature difference at the channel section under consid-
eration. By definition, we have:

[6vaF
5= F_
- fudF

F

where v 1is the velocity of the flow at the polnt considered,

8 the mean temperature difference at the section considered

In our case ’ . + 5
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or 1
‘ f'e (1 —8%) dt
=t
f(l—E*)dE
Siﬁce
o1
- 2
fa—ma—g,
0
therefore

-—2-je(l-'—E’)dE.

Substituting the value of § from (15), we obtain:

—7,54

=

x 1
=0, (1,2086 " %f(l—?)%(i)dﬁ—
0

1

—85.4 5,5 3 -
—0,299 ¢ 5 f (1 —&2) p, (&) d& 4

0

1
Pe

—246 —

:-]k

1
40,118 %f(l—E"')%(E)dE—...).
0

On carrying out all the indicated operations, we obtain the
following expression for the mean temperature difference

1 x

—75 1 £ —854 L% —26-L X
“=°o(0,9168 Pek 1 0,053e  P°"*4-0,0086 e P"'+...). (16)

We can now £ind the expression for the coefficient of heat
transfer from the ligquid to the channel wall., By definition

&q === ——
8’
where Q is the heat flow in a direction normal to the
channel wglls. But, as is known,

=43,

where A 1- the coefficient of heat conductivity of the
liguid. Eence

a6 1
“=""(5;T>y= 9 a7

“Thg_derivative 30/3y 1is obdbtained from equation (15) as
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B\ 8 . T
(a}‘) o ——-—'7< 3444 ¢ -
y=-=3
1 x

— 85, - —ogs L X
+222e "4 1335e "”‘+...>.

1020

(18)
Substituting this value in (17) and the value of 8
from (16), we obtain

—75a L X —854 % —2a6 L X
N 3444e T 'ioome Fi1335e L
U= - 1 1 x ) (19)
A ~ T ~854 55 5 ~ 6525
0,916 e -+ 0,053 ¢ + 0,0086 e +...

Dividing numerator and denominator of the above expresslorn

by e Pe h we obtain
—o201 L% —253.54 o X
M 3aioose "+ 13385 . 0)
o h —-9294 —25354Pe i
0,916--0,053 e +0 0086 e

v

For comparison of the obtained solution with that of
Nusselt for the round tube,

we introduce the hydraulic
diameter defined by the formula

_Af
-1,

where f! ig the eross~sectional area of the channel

o] the perimeter of the channel

I 4

Tor a narrow rectangular channel whose base B 1s large
in comparison with 1ts height h, the hydraulic diameter
is egqual to

dh == 2’1,

since the value of h/B may be neglected in comparison
with unity.

Introducing the Nusselt number

ad
Nu=—2
we obtain:
—37°p¢ X, -1010Ph-;35
Nu— 6,888-1-4,484 e _ + 2,67¢e —i— ’ @1)
—370 —?. _x — 1010 5~

Pey, Peh dy
0,916--0,053 e " 10,0086 e
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where Fey 1is the'Péclet number computed for the hydraulic
diameter 4y = 2h, ' ; oo

For a round tube, the analytic soluticn is of the form

~103 ,8 L X -228 EL.%
d e
gu o 2:996 + 2.228 e Fe® +a.008e T4 ..,
v -103 ,8 1. X ~p2s.6.}. X
0.819 + 0.0976 ¢ @ FPe d 4+ 0,01896 e Ped, .
(See, for example, reference 3, pp. 225-228.) (22)

Figure 5 gives the curves of the Nusselt number as a

function of the reduced length éL g for the channel and
e

tube. 4as shown by these curves for both tlhe channel and
the tube, the intensity of the heat exchange is infinitely
large at the initial sections. The coefficient of heat
transfer then decreases in the flow direction very rapidiy
at first, then at a slower rate, gradually aprroaching a
certain limiting value. Denoting the latter by Nu
we obtain from formulas (21) and (22), setting

1z
Pe 4

min’

for the round tube: Numin = 3.65

for the narrow rectangular channel:

or the corresponding values of (Qg,.!
. = 3.65 A
®min °° &
. N
= ‘B, 77 =
cxfznit»n 3 h

We have thus obtained the result that the minimum
values of the heat-transfer coefficients for the round
tube and the narrow rectangular channel are very close to
each other if the diameter @ of the tube is equal to the
height h of the channel. The length of the "initial part,®
along which the minimum value of the coefficient of hseat
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transfer from the liquid to the wall is practically estab-
lished, may be found from formumlas (21) and (22).  If the
value of the heat-transfer coefficient is permitted to
differ by 1 percent from the minimum, we obtain for the
round tube

x

= 0.05 Pe

for the narrow rectangular channel

X _ _

== 0.0125 Pey
h

Introducing the parameter

Pe =

ol

and remembering that dy = 2h, we obtain

= 0,05 Pe (23)

BN

that is, the length of the "initial part" of the narrow
rectangular channel is egual to the length of the initial
part of the round tube if the characteristic linear dimen-
sionsy namely, the height h and the tube diameter d
are equal to each other. :

3. ANALYSIS OF THE OBTAINED SOLUTION

The analytical solution was obtained on the basis of
a number of simplifying assumptions. The latter, as was
remarked above, do not entirely correspond to the strict
conditions of the process and the inaccuracies introduced
in the course of obtaining the solution evidently show up
in the final result. We shall conrsider a 1little more in
detail the assumptions made and investigate their effect
on the final result. An essential simplification of the
problem is attained by the assumption that 926/3x® is
negligibly small by comparison with aae/aya. As, however,
may be seen from the formulas obtained, the temperature
near the initial cross section of the channel changes very
~rapidly along the x-axis and hence the axial gradients
here are very large. The assumption, therefore, does not
correspond to the true character of the heat exchange in
the initial part. For the elements sufficiently removed
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from the initial section, the axial gradients are very
small and negligidble and do not introduce any considerabdble
error in the fihal result. The error is thus very small
for the region of stabilized heat exechange but may bde very
large in the initial part. It is evident that the smaller
the initial part as compared with the entire length of the
channel the smaller will be the error. Since the length
of the initial part is proportional to Pe the error will
decrease with decrease in Fe and with increase in the
relative depth of the channel x/h.

A second very important assumption is that of the non-
variance of the physical constants of the viscous liquid
over the channel cross section. This means that the vis-
cosity of the liguid is constant over every section and
that the velocity distribution over any section follows
the parabolic law. Actually the viscosity of the liguid
varies considerably with the temperature -~ the viscosity
of mineral oils, for example, varying almost in inverse
proportion to the cube of the temperature. OConseguently,
the actual velocity distribution over a cross section will
not follow the parabolic law. On figure 6, tzken from
the work of Greber and Erk (reference 3), are shown the
velocity distributions for laminar flow in a tube for
three cases: isothermal flow (curve I), case of heat ab-
sorption by the liquid (curve III), case of heat emission
by the liguid (curve II). As may be seen from the figure,
the deviation introduced by the heat exchange in the ve-
locity distribution from that corresponding to isothermal
laminar flow is very large. TFor this reason, the obtained
theoretical formulas are applicable only if the temperature
differences are gmall or, if this is not the case, only to
liquids the physical properties of which do not change
with the temperature.

With regard to the assumption of constancy of the
temperature of the channel walls, cases may occur in prac-
tice where this assumption actually applies. Such cases,
however, are very rare. Generally the temperature of the
walls changes along the direction of flow of the 1ligquid,
The assumption of constant wall temperature then introduces
some errors in the final result. It is readily seen that
these errors decrease with increase in the velocity of
flow of the liguid, that is, with increase in Pe and de~
crease in the L/h, the relative depth of the channel.

The result 1is thus obtained that the errors arising from-
the assumption of constancy of the wall temperature to a

certain degree are compensated by the errors arising from
neglecting 026/3x2,
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The rémaining simplifying assumptions sufficlently

well correspond to the actual conditions of the heat trans-

fer and do not greatly affect the final result.

4, RESISTANCE OF A HEATED VISCOUS LIQU:D FOR_
LAMINAR FLOW IN A NARROW RECTANGULAR GHANNEL

The resistance coefficient for isothermal flow of a
viscous liguid in a narrow rectangular channel is expressed,
as is known, by the following formula

_ 96 A
Aep = 22> (24)

where Re 1is the Reynolds number computed by the formula

2h pv
Re = ==t 2
(P8 . (25)

in which the density and the coefficient of viscosity of
the liquid are, respectively, denoted by p and u.

We shall generalize formula (24) to the case of the
flow of a viscous ligquid whose temperature and, hence, also
whose physical constants vary over the cross section of
and along the channel. ¥or this purpose we choose the co-
ordinate axes as shown in figure 7 and consider an elemen-
tary parallelepiped of liquid of volume 2ydx 1. Denoting
by T the tangential stress on the surface of the element,
we have, from the condition of equ111br1um,

2 ydp = 21dx

whers T =W dv
ay .
Remembering that the derivative: dv/dy' is negative, we
obtain - - .
d dv
g, v
dx . dy

In the case of nonisothermal flow of the liguid the
coefficient of viscosity W is a function of x and .
Denoting this function by u(x,y), we substitute it in the
obtained equation:

dp _ _
Vi mix,y)
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Separating the variables and 'integrating with respect
.to |y  Dbetween the limits y and Db, we shall have:

b - b
4 v
and since v =0 for y=1»
| d P a
D yoy
v = o= [ ==t 26
d&[u(mﬂ (26)
y

In order to compute the obtained expression, it is
necessary to know the temperature field of the liquid at
the section considered and the law of variation of the
viscosity with the temperature. The temperature field at
any cross section of the channel may be determined by for-
mula (15). The application, however, of this formula %o
the computation of expression (26) is very inconvenient.
For our purpose it is sufficient to make mse only of the
first term of this formula, giving the temperature field
in the region of gstabilized heat interchange. .In fact,
as may be seen from figure 8, starting with the value

1 1 '
f;'a'= 0.005, the first term, with sufficient accuracy,

characterizes the temperature field, the length of the
initial portion, as follows from formula (23), being equal
to

= 0.005 Pe.

A

In present-day airplane oil radiators, the initial
portion constitutes about 15 to 20 percent of the entire
relative length of the channel passage through whiech the
0il flows. Thus the greater part of the channel is in
the region of stabilized heat interchange and hence in
making use only of the first term of the formula (15) for
the computation of expression (26), we do not make a large
error.

The law of variation of the viscosity with the tempera-
ture is generally given by an empirical formula. 1In the
range of 50° to 150° the change in viscosity of aviation
0ils with temperature is expressed with sufficient accuracy
by the following empirical formula (reference 4)
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L= 1000 1. - (27)

t

where 1 1s a2 number characteristic of the oil
t the temperature of the 0il in degrees O.

We determine the temperature of the oil at any point
of the cross section under consideration by (15), taking
only the leading term of the series

. l x
_He 54 —— —

t = to + 1,208 Goe Fe h y,

The function y, = wa(y/b). as may be seen from figure 9,
may with a sufficient degree of accuracy be set egqual to

y, = (1 -%2) | (28)
)

Substituting the found value of t in formula (27)
and setting

n

: X
Then ~7.84 ==
t = ty + 1.208 6e F h(:.—

o'm l‘<

5 -7, 54 é; ;
e
C = 1.208 gi e (29)
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we obtain
1000 1

B [1 e ( _%—” . |

‘Koting that 1000 1/t is the . viscosity corresponding to
the temperature of the wall, we may write:
o

a [1+c(1—;‘)’ )]’ '

where . u, is the viscosity corresponding to the temperature

of the wall. Substituting the obtained value of L in
(26), we obtain:

l.l:

b
1 4, ‘ 2\ T
'a=-————d%f[l+c<l—~‘zz ]ydy
y

Then

or

b d,
0 d)’c’ f (14 Cz)* de.

Carrying out the computation of this integral, we obtain:
b dp _yj_ 3 y?\? . yr\®
=g as| (o) + e (=) v e (- )+
Ca 2 \ 4
4‘";‘(1“"%%>']- (30)

The mean velocity of flow of the liguid is determined
from the relation

T Rl 2] 'vdy __f

or substituting the value of v from (30)

U=
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oot [l 8+ 3 () +o =)

4]
C? yz
+5 (5]
The computation of this integral gives

- b dp 3
V=3 7;(1+l,2€+0,687€2+0,06826).

@1
From this we have
dp _ 3mv, 1 X (32)
dx = b 141,2C+0,687C*0,0682C?
Setting ‘
n=—1,208 7— . (33)
0
then
1 x
: Cene ~FF (34)
and
d_p _ B 1
dx~— b —754 1 x

- —754-L E\2 7581 _‘"\—‘
141,21 7 "40,687 ( ne ") --0,0682 (ne et

Integrating this expression between the limits ©
we obtain

apd 1,
l B
Jar=
0
3p 'vf dx .
b —754 L% [ —1sp\ _7,54_‘_:1 8
° 1412ne " 40687\ne ") 40,0682\ n ”"‘)
or ~
Ap =(p;—Ppo) =
1
_3905f dx
b — 754 o — 7.5 oo\ — 754 L EN\3?
° 141,2ne ”“‘+o,687<ne 3 ")+o,0682<ne """>
where
Ap 1s the resistance of the channel for the flow of
heated oil
Po pressure at the initlal section of the channel
Py

pressure at the final section of the channel

To compute the obtained integral we make the substitution
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Tel e . . . _”—7'54%%
. e 2= ne’
and 8et . - a o e
11 1 1
| =754 gy =302 g (35)
Then* .
R __ ne—m
Ap— 3p,Pehv dz _
P =" "p7,54 Zz(13-1,22-1-0,6872* 10,0682 2°) "

n .
*The parameter Fe changes only slightly along the chan-
nel so that with sufficient accuracy Pe may be considered
independent of the length.

Carrying ouvt the integration, we obtain after certain
trausformations - _
3p, Pehv

7,54 b*®

0,682 n?e” ™ 4-0,132ne. ™ 40,123
050 ——G g 0,133n 10,123

2,32n(e”™—1) ]

316 arc tg —
A OB are e e .32 ne ™) (0,23 12,32 1)
By definition, we have

Ap = [ m 40,0047 1n 28— "85,

n815

A, =P
fr g | (36)
P75 on 4

Hence
12}»0Pelz2[ *"‘+815
e = o= [ m+-0,0047 In = +
fr ™ 7.54pv b n--8,i5

0,682 n2e™ 2™ }-0,132 ne” ™ 40,123

+-0,51n T e "
0,316 arc tg 2,32n ge‘_ " — 1) ]
' 140,23+ 2,32 ne™ ™) (0,23 42,32 n)

Remembering that -

S K - Peh Ped, 1
_ - 75417 30,21 m
-and denoting : :

Ry = 2T @37)
. : . Po
_ We obtain finally , - ‘ o
o6 "‘—}-8,1‘5 '
0,682n% ™ *™ |- 0;'1:3’2 e~ ™ 40,123
_7'70’5 =G e8emw 0,180 10,123 T
. . 2,32n(e"™—1) ]

0,316 arct — 38
+ _g 140,23 +2,32ne™ ™) (0,23 -+ 2,32 1) (38)
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In the particular case that the flow is isothermal,
we have Go = Q0 and therefore n = 0, whence

96
Ap = o
fr R,

that is, we obtain formula (24).

Thg numerical value of the term

pe”® + 8,15
n + 8.15

0.0047 1n

is very small by comparison with the other terms entering
expression (38) and may be neglected.

Setting

0.682 n% ™ 4+ 0.132 ne ° + 0,123
0.682 n® + 0.132 n + 0.123

¥=mn+ 0.5 1n

2.32(e” ™ - 1)

+ 0.316 (tan~?1) (39)
1+ (0.23 + 2.3%32ne”" %) (0.23 + 2.32n)
we obtain Afr = %f % (40)

where R, 1is the Reynolds number referred to the tempera-

ture of the wall.

The formula obtained permits the computation of the
resistance coefficient for laminar flow of a heated o0il in
radiators with oil passages in the form of narrow rectangu-
lar sections whose base is large by comparison with the
height. The formula may, however, be employed also for
other sinapes of passages,provided that the height of the
channel is small compared to the base, since for this con-
ditiéon the shape of the channel plays an insignificant part.
For the computation of the hydraulic resistance of a radia-~
tor, it is necessary to know the mean temperature ¢, of
the radiator walls, the inlet temperature of the oil ¢t
and the reduced length of the channel ,—l~ le» This

Peh dh

io
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formula evidently hoids'only“under the condition that the
temperature of the oil throughout the channel is’ not be-
low 609 to 50° € since at lower temperatures the law as-
sumed by us for the variation of the viscosity becomes un~-
true and the formula gives too great a value for the co-
efficient - Agp. It is not difficult to obtain a formula
for application ‘also to lower oil. temperatures. Tor this
purpose it is necessary to assume another law of variation
of viscosity wlth temperature- namely, one that corresponds
to the new temperature range. 1In airplane 0il radiators
the temperature of the oil as a rule is always above 50° C.
'In view of this fact we considered it sufficient to limit
‘ourselves to the derivatlon of a formula for the computa-
tion of the resistance for an oil temperature above 50° ©.
For convenience in applying formula (40) %o practlcal com-
putations the chart of figure 10 was constructed from which
the value of Afr for given values of n and m can

._readlly be found.
5., COMPARISON OF THEQORETICAL WITH TEST RESULTS

In the testing of airplane radiators the coefficient
of heat transfer from the liquid to the air is generally
determined from the relation

k= % (41)
S(tL- t)

where k¥ is the over-all coefficient of heat transfer 1n
Cal/hr : . .

§ the cooling surface of the radiator in m?% .

t1 the arithmetic mean of the inlet and outlet tem-
peratures of the cooling liquid in the radilator

ty the temperature of the air entering the radiator

_ .. The coefficient of heat transfer from the liquid to
the wall is separated from the over-all coefficient by -
various methods. A typical method is the following. -The
heat transfer is determined for the same radiator for two
different liquids (for example water and ethylene glycol
or water and oll) for the same weight of air through the
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radiator. Since the coefficient of heat transfer from the
~wall to. the air should be the same for both cases the co-
efficient of heat transfer from the liguid to the wall can
be found from a comparison of the tests.

As may be seen from the method itself of determining
the heat~transfer coefficient of the radiator from the
liquid to the wall, a mean coefficient is obtained for the
heat given off over the entire cooling surface in contact
with the liquid referred to the temperature difference be-
tween arithmetic mean of the inlet and outlet temperatures
and the mean temperature of the radiator cooling surface.
Hence for tlhe comparison of the obtained theoretical re-
sults with experimental results we must average the heat
transfer coefficients for the entire cooling surface of
the channel and refer to the temperature difference cor-
regponding to the test data. For this purpose we compute
the gquantity of heat which the heated liguid gives off in
laminar flow in a rectangular channel whose length is equal
to I and perimeter unity. If @ is the gquantity of
heat in cal/hr

Q=/a§dx (42)
0 : |

where a 1is the coefficient of heat transfer from the
liguid to the wall at the channel cross
section under consideration.

8 ‘the mean temperature of the liguid at the section

Substituting the values of B8 and a from equations (16)

and (20) and retaining only three terms of the series,we
obtain )
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which after integrating gives

7,54 — 85,4

L
B 00263 P

L
Pe

' Q=190Pe<0,49—v—0,458(3_
L ‘ L e LAY L ' |
—0,00543¢ P ")' (43)

The mean coefficient of heat transfer from the liquid to
the wall will be equal to

—_ Q.

]

(8 + L)L . : '
: _ 2 . :
where BL is the mean temperature difference at the end

of the channel. ¥From (16) we obtain for Ei the expression

2

— 7,54 —- 1 L , 85,4 R ;z«;li :

b, =6, (0,916e Pe’h L 0,053e PR |- 0,0086e Peh ).
Substituting the values obtained for @ and gi in (44)
and retaining for §i only the first two and for Q only
the first three terms of the series, as is sufficient for
our purposes, We obtaln after some transformations

—302 1L a1 L
L 0,49—0,458¢  Ph “h__0,0263¢  Peb b
o = Pey,
A a2 L “an L L (45)
1-}-0,916e o “h +0,053¢  Peb %
or introducing the Nusselt number ‘

Nu =2,
IS
we obtain
~30.2 oL e L L
N — pe @0 0,49 —0,458¢ ~ "h % __0,0263¢ ~ Pn
T P T (49

30.2—I:,—d — —_
14 0,916e ‘h %h 10,053z Pen dn

Figure 11 gives the curves of ‘ﬁh ageinst Pe, dh/L

drawn by the above formula. On the same figure is given
the curve constructed from the test results of Brown and
Barlow (reference 1) for the coefficient of heat transfer
from ethylene glycol to the walls of a honeycomd radiator.
The latter was assembled from hexagonal tubes in such a
manner that at two out -of every six sides of a tube wide
rassages h were formed and at the remaining four sides
narrow ones h' where 2h! = h. -Thus the velocity of
flow of the 1liquid in any cross-section of the radiator
was prectically constant. The hydraulic diameter for

the liguid passages was computed by the formula
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. 7 L SRt ”
dp = 4 L{(h + 2n!') (47)
6 L+ 2h + 4ht .

where 1 was the lengthiof the air tube (depth) of the
radiator.

As may be seen from figure 11, the theoretical curve
lies sufficiently close to the .experimental curve.

The same good agreement is obtained from a comparison
of the theoretical results with the test results for air-
0il radiators. The latter (fig, 13), are honeycomb radi-
ators with round tubes. To form the passages for the oil,
the ends of the tubes are formed into a2 hexagon and soldered
together. In contrast to the usual honeycomd radiators the
coolant (0il) flows not in a direction perpendicular to
that of the air flow in the pipes but parallel to it,

With the object of attaining a more uniform operation
of 0il radiators, partitions are constructed by means of
which the velocity of the 0il flow is varied at different
sections of the radiator. To compute the reduced length
of the radiator and the Nusselt number, it is necessary to
find the averaging law of the velocity and the expression
for the hydraulic diameter. Denoting by v and F with
the corresponding subscripts the velocity of the liquiad
and the cross-sectional area of the passages in one sec-
tion, the mean velocity of the ligquid in the entire radia-
tor will be

ViFy + Vv F + ... v R

¥y

v =

where F is the over-all area of the pgross sections of all
passages for the liquid. Prom elementary con-
siderations we obtain

- + 1) W
v = (ns ) (48)
3.6X10° F (1 - £)

where n is the number of partitions

v flow of 0il through the radiator in ms/hr

r frontal area of the radiator in n°
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f the coefficient of "live¥ cross section of the
radiator egqual to the ratio of the alr.passage
area to the entire frontal area of the radiator.

Likewise from elementary considerations we may obtain the
following expression for the hydraulic diameter of the oil
passages

' 1.103 (do + hL)

= - (49)
h dq dO

where d, is the outside dlameter of the tube in m

hL the minimum o0il passage width

Figure 14 gives the curve of Nu against Pey dh/L
constructed dy formula (46). There are also plotted the
test points for air-oil radiators obtained from the radia-
tor tests of 8. P. Cherbakov at CAHI. The velocity of
flow of the 0il and the hydraulic diameter were computed
by the above formulas.

Formula (40) obtained for the resistance of a honey-
comb radiator with heated-oil flow gives satisfactory
agreement with test results as may be seen from figure 15,
which gives the variation of the resistance coefficient Afr
with the Reynolds number Rey. In computing Mgy by for-

mula (40) the temperatures taken for the radiator walls
were those computed from the test data of §. F. Cherbakov
(reference 9).

CONCLUSIONS

1. The theoretical values obtained for the coefficient.
of heat transfer from the liguid to the wall for laminar
flow of the ligquid in a rectangular channel for Pey dh/L<150

glve satisfactory agreement with the test results,

2. The theoretical values obtained for the resistance
coefficient likewise give satisfactory agreement with test
results for honeycombd radiators in whiech the flow of the oil
is directed perpendicular to the direction of the flow of
the air in the tubes.

In conclusion the author wishes to express his sincere
thanks to 0. B. Blasov for suggestions of value in prepar-
ing this paper.
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rigure 3. _Arrangement of tubes and channels for passages
2 for the liquid in a radiator system.

4

S

Figure 13.



NACA Technical Memorandum No. 1020 Figs, 3,4

Ll
0 - } ¥ n 0]
; L B N
v LA

Figure 3

4/ b

\Vg/
o LS
| /

SN
< - 1

-1

Figure 4.~ Graphs of the functionsVq,V¥ 5, and ¥z,



NACA Technical Memorandum No. 1020

Nu
X& Narrow rectansular channe
5 3
Round pipe
0
¢ .05 .1 .15 2 1
Pe
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Figure 6.~ Velocity distribution in pipe for laminar flow. I- isothermal
flow, II- emission of heat by the liquid, III- absorption of
heat by the liquid. Mean velocity ¥ in all threc cases the same.
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